algoOctree - 8叉树的具体实现

1 8叉树的实现思路:(ref:)

  • 1 将所有点云初始化为一个节点的8茶树
  • 2 使用partition函数递归partition,其过程如下:需要传入可划分层级
    • 2.0 若可划分层级为0 || 子节点中没有数据 || 子节点个数过少不需要再次划分 ,return
    • 2.1 partition当前节点为8个子节点,将位于子节点点对应的点的下标放入子节点中
    • 2.2 减小level层级,然后调用partition函数

2 具体实现:

  • 1 构造函数:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    BoundaryVolumeHierarchy(const PointCloud<DIMENSION> *pointCloud)
    : Partitioner<DIMENSION>(pointCloud)
    , mRoot(this)
    , mParent(this)
    , mLeaf(true)
    , mLevel(0)
    {
    Rect<DIMENSION> extension = pointCloud->extension();
    mCenter = extension.center(); // 点云中心
    mSize = extension.maxSize() / 2; // 点云最长边长的一半
    mIndices = std::vector<size_t>(pointCloud->size());
    std::iota(mIndices.begin(), mIndices.end(), 0);
    mLeafTable = std::vector<BoundaryVolumeHierarchy<DIMENSION>*>(pointCloud->size(), this); // 表示点云中每个顶点位于8叉树的叶子节点的地址
    }
  • 2 划分函数

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58

    // 建立octree,直到每个叶子节点最多包含minNumPoints
    void partition(size_t levels = 1, size_t minNumPoints = 1, float minSize = 0.0f) override
    {
    if (!isLeaf())
    {
    for (size_t i = 0; i < NUM_CHILDREN; i++)
    {
    if (mChildren[i] != NULL)
    mChildren[i]->partition(levels - 1, minNumPoints, minSize);
    }
    }
    else
    {
    // 递归层次用完了 || 叶子内部点数达到最小要求 || 最多只有一个点了 || 节点的边长小于最小限度
    if (levels <= 0 || mIndices.size() <= minNumPoints || mIndices.size() <= 1 || mSize < minSize) return;
    // create new centers
    Vector newCenters[NUM_CHILDREN];
    calculateNewCenters(newCenters);

    mLeaf = false;

    // create children
    float newSize = mSize / 2;
    for (size_t i = 0; i < NUM_CHILDREN; i++)
    {
    mChildren[i] = NULL;
    }

    // split points
    for (const size_t &index : mIndices)
    {
    // calculate child index comparing position to child center
    // 对于每个点,计算它位于当前节点的哪个子节点?
    size_t childIndex = calculateChildIndex(this->pointCloud()->at(index).position());
    if (mChildren[childIndex] == NULL)
    {
    mChildren[childIndex] = new BoundaryVolumeHierarchy<DIMENSION>(this, newCenters[childIndex], newSize);
    mChildren[childIndex]->mIndices.reserve(mIndices.size());
    }
    // 将这个点压入对应的子节点中
    mChildren[childIndex]->mIndices.push_back(index);
    // update current leaf where point is stored
    mRoot->mLeafTable[index] = mChildren[childIndex];
    }

    mIndices.clear();

    // partition recursively, 将可用层数减少1,将每一个子节点进入下一次细分
    for (size_t i = 0; i < NUM_CHILDREN; i++)
    {
    if (mChildren[i] != NULL) {
    mChildren[i]->partition(levels - 1, minNumPoints, minSize);
    }
    }
    }
    }

3 完整实现 - https://github.com/abnerrjo/PlaneDetection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#ifndef BOUNDARYVOLUMEHIERARCHY_H
#define BOUNDARYVOLUMEHIERARCHY_H

#include <algorithm>
#include <set>

#include "partitioner.h"

template <size_t DIMENSION>
class BoundaryVolumeHierarchy : public Partitioner<DIMENSION>
{
public:
typedef typename Point<DIMENSION>::Vector Vector;
static const size_t NUM_CHILDREN = 1 << DIMENSION;

BoundaryVolumeHierarchy(const PointCloud<DIMENSION> *pointCloud)
: Partitioner<DIMENSION>(pointCloud)
, mRoot(this)
, mParent(this)
, mLeaf(true)
, mLevel(0)
{
Rect<DIMENSION> extension = pointCloud->extension();
mCenter = extension.center();
mSize = extension.maxSize() / 2; // 点云最长边长的一半
mIndices = std::vector<size_t>(pointCloud->size());
std::iota(mIndices.begin(), mIndices.end(), 0);
mLeafTable = std::vector<BoundaryVolumeHierarchy<DIMENSION>*>(pointCloud->size(), this);
}

BoundaryVolumeHierarchy(const BoundaryVolumeHierarchy &bvh) = delete;

~BoundaryVolumeHierarchy()
{
if (!isLeaf())
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL)
{
delete mChildren[i];
}
}
}
}

// 建立octree,直到每个叶子节点最多包含minNumPoints
void partition(size_t levels = 1, size_t minNumPoints = 1, float minSize = 0.0f) override
{
if (!isLeaf())
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL)
mChildren[i]->partition(levels - 1, minNumPoints, minSize);
}
}
else
{
// 递归层次用完了 || 叶子内部点数达到最小要求 || 最多只有一个点了 || 节点的边长小于最小限度
if (levels <= 0 || mIndices.size() <= minNumPoints || mIndices.size() <= 1 || mSize < minSize) return;
// create new centers
Vector newCenters[NUM_CHILDREN];
calculateNewCenters(newCenters);

mLeaf = false;

// create children
float newSize = mSize / 2;
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
mChildren[i] = NULL;
}

// split points
for (const size_t &index : mIndices)
{
// calculate child index comparing position to child center
// 对于每个点,计算它位于当前节点的哪个子节点?
size_t childIndex = calculateChildIndex(this->pointCloud()->at(index).position());
if (mChildren[childIndex] == NULL)
{
mChildren[childIndex] = new BoundaryVolumeHierarchy<DIMENSION>(this, newCenters[childIndex], newSize);
mChildren[childIndex]->mIndices.reserve(mIndices.size());
}
// 将这个点压入对应的子节点中
mChildren[childIndex]->mIndices.push_back(index);
// update current leaf where point is stored
mRoot->mLeafTable[index] = mChildren[childIndex];
}

mIndices.clear();

// partition recursively, 将可用层数减少1,将每一个子节点进入下一次细分
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL) {
mChildren[i]->partition(levels - 1, minNumPoints, minSize);
}
}
}
}

const Partitioner<DIMENSION>* getContainingLeaf(size_t index) const override
{
return mRoot->mLeafTable[index];
}

BoundaryVolumeHierarchy<DIMENSION>* child(size_t index)
{
return mChildren[index];
}

std::vector<const Partitioner<DIMENSION>*> children() const override
{
if (isLeaf()) return std::vector<const Partitioner<DIMENSION>*>();
std::vector<const Partitioner<DIMENSION>*> children;
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL)
children.push_back(mChildren[i]);
}
return children;
}

const Partitioner<DIMENSION>* parent() const override
{
return mParent;
}

const Vector& center() const
{
return mCenter;
}

float cellSize() const
{
return mSize;
}

bool isRoot() const override
{
return this == mRoot;
}

bool isLeaf() const override
{
return mLeaf;
}

size_t octreeLevel() const
{
return mLevel;
}

size_t numPoints() const override
{
if (isLeaf())
{
return mIndices.size();
}
else
{
size_t numPoints = 0;
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL)
numPoints += mChildren[i]->numPoints();
}
return numPoints;
}
}

Rect<DIMENSION> extension() const override
{
return Rect<DIMENSION>(mCenter - Vector::Constant(mSize),
mCenter + Vector::Constant(mSize));
}

std::vector<size_t> points() const override
{
if (isLeaf())
{
return mIndices;
}
else
{
std::vector<size_t> points;
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mChildren[i] != NULL)
{
std::vector<size_t> childPoints = mChildren[i]->points();
points.insert(points.end(), childPoints.begin(), childPoints.end());
}
}
return points;
}
}

void getNeighborCells(std::vector<BoundaryVolumeHierarchy<DIMENSION>*> &neighbors)
{
BoundaryVolumeHierarchy<DIMENSION>* neighbor;
for (size_t i = 0; i < DIMENSION; i++)
{
neighbor = getNeighborCellsGreaterOrEqual(i, false);
getNeighborCellsSmaller(i, false, neighbor, neighbors);
neighbor = getNeighborCellsGreaterOrEqual(i, true);
getNeighborCellsSmaller(i, true, neighbor, neighbors);
}
}

private:
BoundaryVolumeHierarchy *mRoot;
BoundaryVolumeHierarchy *mParent;
BoundaryVolumeHierarchy *mChildren[NUM_CHILDREN];
Vector mCenter;
float mSize;
bool mLeaf;
size_t mLevel;
std::vector<size_t> mIndices;
std::vector<BoundaryVolumeHierarchy<DIMENSION>*> mLeafTable;

BoundaryVolumeHierarchy(BoundaryVolumeHierarchy *parent, const Vector &center, float size)
: Partitioner<DIMENSION>(parent->pointCloud())
, mRoot(parent->mRoot)
, mParent(parent)
, mCenter(center)
, mSize(size)
, mLeaf(true)
, mLevel(parent->mLevel + 1)
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
mChildren[i] = NULL;
}
}

void calculateNewCenters(Vector centers[NUM_CHILDREN])
{
float newSize = mSize / 2;
for (size_t dim = 0; dim < DIMENSION; dim++)
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
int signal = (((i & (1 << (DIMENSION - dim - 1))) >> (DIMENSION - dim - 1)) << 1) - 1;
centers[i](dim) = mCenter(dim) + newSize * signal;
}
}
}

size_t calculateChildIndex(const Vector &position)
{
size_t childIndex = 0;
for (size_t dim = 0; dim < DIMENSION; dim++)
{
childIndex |= (position(dim) > mCenter(dim)) << (DIMENSION - dim - 1);
}
return childIndex;
}

size_t getIndexOnParent()
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (mParent->mChildren[i] == this)
{
return i;
}
}
throw "Could not find node on parent";
}

size_t getIncrement(size_t direction, bool greaterThan)
{
int increment = 1 << (DIMENSION - direction - 1);
if (!greaterThan)
{
increment = NUM_CHILDREN - increment;
}
return increment;
}

BoundaryVolumeHierarchy<DIMENSION>* getNeighborCellsGreaterOrEqual(size_t direction, bool greaterThan)
{
if (isRoot())
{
return NULL;
}
else if (greaterThan && mParent->mCenter(direction) > mCenter(direction) ||
!greaterThan && mParent->mCenter(direction) < mCenter(direction))
{
size_t index = getIndexOnParent();
size_t increment = getIncrement(direction, greaterThan);
return mParent->mChildren[(index + increment) % NUM_CHILDREN];
}
BoundaryVolumeHierarchy<DIMENSION>* node = mParent->getNeighborCellsGreaterOrEqual(direction, greaterThan);
if (node == NULL || node->isLeaf())
{
return node;
}
size_t index = getIndexOnParent();
size_t increment = getIncrement(direction, !greaterThan);
return node->mChildren[(index + increment) % NUM_CHILDREN];
}

void getNeighborCellsSmaller(size_t direction, bool greaterThan, BoundaryVolumeHierarchy<DIMENSION>* neighbor,
std::vector<BoundaryVolumeHierarchy<DIMENSION>*> &neighbors)
{
std::queue<BoundaryVolumeHierarchy<DIMENSION>*> candidates;
if (neighbor != NULL) candidates.push(neighbor);
while (candidates.size() > 0)
{
BoundaryVolumeHierarchy<DIMENSION>* front = candidates.front();
candidates.pop();
if (front->isLeaf())
{
neighbors.push_back(front);
}
else
{
for (size_t i = 0; i < NUM_CHILDREN; i++)
{
if (front->mChildren[i] == NULL) continue;
if ((greaterThan && front->mCenter(direction) > front->mChildren[i]->mCenter(direction)) ||
(!greaterThan && front->mCenter(direction) < front->mChildren[i]->mCenter(direction)))
{
candidates.push(front->mChildren[i]);
}
}
}
}
}

};

template class BoundaryVolumeHierarchy<2>;
template class BoundaryVolumeHierarchy<3>;

typedef BoundaryVolumeHierarchy<2> Quadtree;
typedef BoundaryVolumeHierarchy<3> Octree;

#endif // BOUNDARYVOLUMEHIERARCHY_H